Table 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement factors $(\text{\AA}^2 \times 10^4)$

$$U_{\rm eq} = \frac{1}{3} [U_{33} + \frac{4}{3} (U_{11} + U_{22} - U_{12})].$$

	x	y	Ζ	U_{eq}
Li(1)	9797 (4)	1917 (4)	845 (5)	202
Li(2)	9840 (4)	1917 (4)	4141 (5)	197
Se	9854 (1)	1978 (1)	7495 (1)	118
O(1)	1104 (2)	2156 (2)	7504 (2)	185
O(2)	-45 (2)	3196 (1)	7512 (2)	171
O(3)	9189 (2)	1282 (2)	8928 (2)	178
O(4)	9223 (2)	1297 (2)	6046 (2)	179

Table	2.	Some	interatomic	distances	(Å)	and	bond
angles (°) with e.s.d.'s in parentheses							

	-				
Li(1)-O(1)	1.931 (5)	O(1)-O(2)	3.164(3)	108.4 (2)	References
0(2)	1.908 (0)	0(3)	$3 \cdot 347(2)$	117.2(2)	
O(3)	1.990 (5)	O(3')	3.131 (3)	106.6 (2)	Dollase, W. A. (1969). Acta Cryst. B25, 2298–2302.
O(3')	1.975 (6)	O(2)O(3)	3.139 (3)	104.9 (2)	International Tables for X-ray Crystallography (1974). Vol. IV.
		O(3')	3.225 (3)	109.7 (2)	Birmingham: Kynoch Press (Present distributor Kluwer
		O(3)–O(3')	3.245 (4)	109.9 (2)	Academic Publishers, Dordrecht.)
U(2) = O(1)	1.946 (5)	O(1) = O(2)	3,218 (3)	112.1 (2)	PISTORIUS, J. (1967). J. Phys. Chem. Solids, 28, 1811-1819.
D(2) = O(1)	1 022 (6)	O(1) O(2)	2,224 (2)	116.3(2)	SCHRANZ, W. T., PARLINSKI, K., WARHANEK, H. & ZABINSKA, K.
O(2)	1.932 (0)	0(4)	$3 \cdot 3 \cdot 3 \cdot 4 (2)$	100.3(2)	(1987) I Phys C 20 5045-5050
0(4)	1.979(3)	$O(4^{\circ})$	$3 \cdot 103(3)$	108.9 (2)	$W_{1007} = \mathbf{P} = \mathbf{W} = \mathbf{C} (1065) \text{In } \mathbf{C} \text{watch Structures Val. 2 New}$
O(4')	1.942 (6)	O(2) = O(4)	3.117(3)	105.7(2)	WYCKOFF, R. W. G. (1965). In Crystal Structures, Vol. 5. New
		O(4′)	3.047 (3)	103.7 (2)	York, London, Sydney: John Wiley.
		O(4)—O(4′)	3.201 (4)	109-4 (2)	Wysluzil, R., Schranz, W. T., Fuith, A. H. & Warhanek, H.
					(1986). Z. Phys. B, 64, 473–480.
Se-O(1)	1.636 (2)	O(1) - O(2)	2.650 (3)	108.2(1)	ZACHARIASEN, W. H. (1967), Acta Cryst. 23, 558-564.
O(2)	1.636 (2)	O(3)	2.673 (3)	109.3 (1)	$7_{\text{ACHARIASEN}} W H (1071) Kristallografing 16 1161 1166 In$
O(3)	1-642 (1)	O(4)	2.654 (3)	108-5 (1)	Design (Easthet terrelation in Case Diver Constalling (1072)
O(4)	1.636(1)	O(2)–O(3)	2.680 (3)	109.7 (1)	Russian (English translation in Sov. Phys. Crystallogr. (1972),
		O(4)	2.692 (3)	110-8(1)	16 , 1021–1025].
		O(3)-O(4)	2.692 (2)	110.4 (1)	ZEMANN, J. (1986). Z. Kristallogr. 175, 299–303.

(1.638 Å).

Acta Cryst. (1989). C45, 159-161

Structure of Tetrakis(trimethylphosphine)cobalt(I) Tetraphenylborate

By L. C. Ananias De Carvalho, Yolande Pérès, Michèle Dartiguenave* and Yves Dartiguenave

Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31400-Toulouse, France

AND ANDRÉ L. BEAUCHAMP*

Département de Chimie, Université de Montréal C.P. 6128, Succ. A, Montréal, Québec, H3C 3J7, Canada

(Received 13 July 1988; accepted 18 August 1988)

Abstract. $[Co{P(CH_3)_3}_4]B(C_6H_5)_4$, $M_r = 682.48$, monoclinic, $P2_1/c$, a = 16.190 (9), b = 12.422 (4), c = 20.900 (10) Å, $\beta = 111.87$ (5)°, V = 3900.7 Å³, Z = 4, $D_x = 1.162$ Mg m⁻³, λ (Mo $K\bar{\alpha}$) = 0.71069 Å, $\mu = 0.63$ mm⁻¹, F(000) = 1456, T = 296 K, final R = 0.037 for 2167 unique observed reflections. The unit cell contains BPh₄ anions and $[Co(PMe_3)_4]^+$ cations. Co has a distorted tetrahedral coordination (P-Co-P = 101.1-125.4°, $\sigma = 0.1°$), and the Co-P distances range from 2.193 (2) to 2.252 (2) Å.

0108-2701/89/010159-03\$03.00

Experimental. Compound prepared by mixing 1.4 g (4.1 mmol) NaBPh₄ in methanol (15 mL) with 1.5 g (4.1 mmol) CoBr(PMe₃)₃ in 15 mL methanol. Color changed from blue to brown, and a brownish green solid precipitated. Blue-green crystals obtained by recrystallization from methanol at 243 K. Elongated prism, $0.30 \times 0.35 \times 0.54$ mm. Space group $P2_1/c$ determined from precession and cone-axis photographs, unambiguously defined from systematic absences ($h0l, l \neq 2n$; $0k0, k \neq 2n$). Enraf-Nonius CAD-4 diffractometer, accurate cell dimensions from 25 centered reflections ($11^{\circ} \le \theta \le 16^{\circ}$), detailed pro-

© 1989 International Union of Crystallography

Related literature. The crystals of the title compound

correspond to Li_2SeO_4 as described by Pistorius (1967) based on a powder diffraction diagram. They

are representatives of the phenakite-type structure (cf. Wyckoff, 1965). Recently Zemann (1986) pointed out a

very short interpolyhedral O(2)-O(2) distance of

2.75 Å in phenakite, Be₂SiO₄. The analogous distance

in Li_2SeO_4 is 3.128 (3) Å. The reasons are the average

cation-oxygen distances in the XO_4 tetrahedra: Be-O

(1.645 and 1.646 Å) is shorter than Li–O (1.966 and 1.950 Å), and Si–O (1.632 Å) is shorter than Se–O

^{*} To whom correspondence should be addressed.

Table 1. Refined coordinates (10⁴, Co × 10⁵), U_{eq} (Å² × 10³)

$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$						
	x	у	z	U_{eq}		
Co	21950 (5)	25304 (8)	11577 (4)	656 (3)		
P(1)	1211(1)	2527 (2)	84 (1)	708 (7)		
P(2)	3393 (1)	3221 (1)	1008 (1)	613 (7)		
P(3)	2548 (1)	832 (2)	1391 (1)	848 (10)		
P(4)	1642 (1)	3622 (1)	1761 (1)	782 (9)		
C(1)	1546 (4)	2077 (5)	-609 (3)	85 (3)		
C(2)	701 (5)	3813 (6)	-272 (3)	112 (4)		
C(3)	234 (4)	1688 (7)	-66 (4)	124 (5)		
C(4)	3937 (3)	2428 (5)	544 (3)	72 (3)		
C(5)	3248 (4)	4481 (5)	565 (3)	89 (4)		
C(6)	4309 (4)	3495 (6)	1810 (3)	99 (4)		
C(7)	1802 (5)	36 (7)	1649 (4)	136 (5)		
C(8)	. 2672 (6)	41 (6)	735 (4)	128 (5)		
C(9)	3554 (5)	554 (8)	2094 (4)	138 (5)		
C(10)	1836 (5)	5007 (6)	1690 (4)	122 (5)		
C(11)	452 (5)	3580 (6)	1550 (4)	117 (5)		
C(12)	2060 (5)	3451 (7)	2650 (4)	133 (5)		
C(41)	7083 (3)	3754 (4)	1115 (2)	47 (2)		
C(42)	6216 (4)	4163 (4)	954 (3)	63 (3)		
C(43)	6028 (4)	5230 (5)	996 (3)	73 (3)		
C(44)	6719 (4)	5966 (5)	1202 (3)	78 (3)		
C(45)	7564 (4)	5611 (5)	1367 (3)	77 (3)		
C(46)	7734 (3)	4545 (5)	1313 (3)	61 (3)		
C(51)	6582 (3)	1672 (4)	1115 (2)	44 (2)		
C(52)	6267 (3)	747 (5)	729 (3)	59 (3)		
C(53)	5769 (3)	-51 (4)	910 (3)	66 (3)		
C(54)	5569 (3)	83 (5)	1486 (3)	65 (3)		
C(55)	5872 (3)	984 (5)	1883 (3)	64 (3)		
C(56)	6358 (3)	1751 (4)	1697 (3)	55 (3)		
C(61)	7134 (3)	2540 (5)	145 (2)	51 (2)		
C(62)	6311 (3)	2504 (5)	-381 (2)	58 (2)		
C(63)	6190 (4)	2617 (5)	-1066 (3)	79 (3)		
C(64)	6894 (5)	2773 (5)	-1253 (3)	87 (4)		
C(65)	7731 (4)	2805 (5)	-754 (3)	78 (3)		
C(66)	7845 (4)	2708 (4)	-75 (3)	62 (3)		
C(71)	8247 (3)	2060 (4)	1472 (3)	57 (3)		
C(72)	8677(3)	2402 (5)	2140 (3)	71 (3)		
C(73)	9464 (4)	1930 (6)	2575 (3)	107 (4)		
U(74)	9833 (4)	1106 (6)	2371 (4)	111 (4)		
C(75)	9413 (4)	738 (5)	1726 (4)	96 (4)		
C(76)	8645 (3)	1199 (5)	1277 (3)	68 (3)		
в	7267 (4)	2504 (6)	959 (3)	53 (3)		

Table 2. Interatomic distances (Å) and bond angles (°)

2.216 (2)	P(2)-C(5)	1.789 (7)
2.247 (2)	P(2)-C(6)	1.809 (7)
2.193 (2)	P(3)-C(7)	1.792 (9)
2.252 (2)	P(3)-C(8)	1-758 (8)
1.814 (7)	P(3)-C(9)	1.774 (8)
1.825 (8)	P(4)-C(10)	1.765 (8)
1-821 (8)	P(4)-C(11)	1.810 (8)
1.823 (6)	P(4)-C(12)	1.737 (8)
101-1 (1)	P(2)-Co-P(3)	103-4 (1)
104.7 (1)	P(2)-Co-P(4)	113-1 (1)
106-4 (1)	P(3)-Co-P(4)	125-4 (1)
119.6 (2)	Co-P(2)-C(4)	118.7 (2)
117-2 (3)	Co-P(2)-C(5)	116.9 (2)
115-2 (3)	Co-P(2)-C(6)	113.3 (2)
99•7 (3)	C(4)-P(2)-C(5)	101-2 (3)
100-7 (3)	C(4)-P(2)-C(6)	101.7 (3)
101-5 (4)	C(5)-P(2)-C(6)	102.7 (3)
116-7 (3)	Co-P(4)-C(10)	114-8 (3)
117-4 (3)	Co-P(4)-C(11)	117-1 (3)
117.0 (3)	Co-P(4)-C(12)	116-6 (3)
102.2 (4)	C(10)-P(4)-C(11)	102-4 (4)
99.0 (4)	C(10)-P(4)-C(12)	101-4 (4)
101.6 (4)	C(11)-P(4)-C(12)	102.3 (4)
	$\begin{array}{c} 2\cdot 216 \ (2) \\ 2\cdot 247 \ (2) \\ 2\cdot 193 \ (2) \\ 2\cdot 252 \ (2) \\ 1\cdot 814 \ (7) \\ 1\cdot 825 \ (8) \\ 1\cdot 821 \ (8) \\ 1\cdot 823 \ (6) \\ \hline \\ 101\cdot1 \ (1) \\ 104\cdot7 \ (1) \\ 106\cdot4 \ (1) \\ 119\cdot6 \ (2) \\ 117\cdot2 \ (3) \\ 115\cdot2 \ (3) \\ 99\cdot7 \ (3) \\ 100\cdot7 \ (3) \\ 101\cdot5 \ (4) \\ 116\cdot7 \ (3) \\ 117\cdot0 \ (3) \\ 102\cdot2 \ (4) \\ 99\cdot0 \ (4) \\ 101\cdot6 \ (4) \\ \end{array}$	$\begin{array}{cccc} 2.216\ (2) & P(2)-C(5) \\ 2.247\ (2) & P(2)-C(6) \\ 2.193\ (2) & P(3)-C(7) \\ 2.252\ (2) & P(3)-C(8) \\ 1.814\ (7) & P(3)-C(9) \\ 1.825\ (8) & P(4)-C(10) \\ 1.821\ (8) & P(4)-C(11) \\ 1.823\ (6) & P(4)-C(12) \\ \hline 101\cdot1\ (1) & P(2)-Co-P(3) \\ 104\cdot7\ (1) & P(2)-Co-P(4) \\ 106\cdot4\ (1) & P(3)-Co-P(4) \\ 119\cdot6\ (2) & Co-P(2)-C(5) \\ 115\cdot2\ (3) & Co-P(2)-C(5) \\ 115\cdot2\ (3) & Co-P(2)-C(6) \\ 99\cdot7\ (3) & C(4)-P(2)-C(6) \\ 101\cdot5\ (4) & C(5)-P(2)-C(6) \\ 101\cdot5\ (4) & C(5)-P(2)-C(6) \\ 117\cdot4\ (3) & Co-P(4)-C(11) \\ 117\cdot0\ (3) & Co-P(4)-C(11) \\ 117\cdot0\ (3) & Co-P(4)-C(11) \\ 117\cdot0\ (3) & Co-P(4)-C(11) \\ 102\cdot2\ (4) & C(10)-P(4)-C(12) \\ 101\cdot6\ (4) & C(11)-P(4)-C(12) \\ \end{array}$

cedure for data collection described elsewhere (Bélanger-Gariépy & Beauchamp, 1980), graphitemonochromatized Mo $K\bar{\alpha}$ radiation, $2\theta_{max} = 45^{\circ}$, $0 \le h \le 17$, $0 \le k \le 13$, $-21 \le l \le 20$; orientation checked every 100 measurements, intensity of three standards checked every hour, max. fluctuation 2.3%, 5378 independent reflections measured, 2167 with I > $3.0\sigma(I)$. Data corrected for Lp and absorption, transmission range: 0.64–0.76. Co position determined from Patterson map, other atoms from ΔF map; structure refined on F isotropically by full-matrix least squares, then anisotropically by block-diagonal least squares. At least one H located on ΔF map for each methyl group, used to calculate ideal coordinates for each set of methyl H (C-H 0.95 Å, isotropic $B = 7 \text{ Å}^2$). Ring H fixed at idealized positions ($B = 5.5 \text{ Å}^2$). H repositioned after each least-squares cycle. Final R = 0.037, wR = 0.041 (weights based on counting statistics), S = 1.35. (shift/ σ), mean = 0.02, max. = 0.06. Residual electron density on final ΔF map: general background from -0.18 to $0.17 \text{ e} \text{ Å}^{-3}$, peaks 0.20 to 0.39 e Å⁻³ near Co or P atoms. Scattering factors from Cromer & Mann (1968), except for H, from Stewart, Davidson & Simpson (1965). Anomalous dispersion f'and f'' terms for Co and P from Cromer & Liberman (1970). Programs used listed elsewhere (Authier-Martin & Beauchamp, 1977). Refined coordinates in Table 1.*

Related literature. In contrast to $Co(PMe_3)_2(BPh_4)$ (De Carvalho, Dartiguenave, Dartiguenave & Beauchamp, 1984), the BPh₄⁻ ion is not π -bonded to the metal, but

* Lists of observed and calculated structure factor amplitudes, H atom fixed coordinates, anisotropic thermal parameters, distances and angles in the BPh₄ ions and details on least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51350 (28 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. ORTEP drawing of the $[Co(PMe_3)_4]^+$ cation. The ellipsoids correspond to 50% probability. H atoms are represented as spheres of arbitrary size.

plays its usual role of counter-ion. Its geometry is normal (see supplementary material). This Co¹ compound is isomorphous with $[Ni(PMe_3)_4]BPh_4$ (Gleizes, Dartiguenave, Dartiguenave, Galy & Klein, 1977), but the tetrahedral environment of the metal [P-Co- $P = 101 \cdot 1 (1) - 125 \cdot 4 (1)^\circ$, Table 2 and Fig. 1] is more distorted than in the Ni¹¹ complex [P-Ni-P] = $104.6(1)-119.9(1)^{\circ}$]. Similar distortions are also present in the related four-coordinate Co^I molecules $CoCl(PMe_3)_3$ [Cl-Co-P = 113.8 (2)°, P-Co-P = 104.8 (3)° (Jones, Stuart, Atwood & Hunter, 1983)] and $CoI(PMe_3)_3$ [I-Co-P = 119.26 (6)-109.77 (4)°, $P-Co-P = 105 \cdot 24$ (4)-106 \cdot 84 (7)° (Bandy, Green & Kirchner, 1985)], and they probably result from the phosphine methyl groups being interlocked to minimize steric hindrances about the metal. The bond lengths in the $[Co(PMe_3)_4]^+$ ion [av. 2.227 Å] remain roughly the same as in the iodo [av. 2.235 Å] and chloro [2.240 Å] compounds.

We are grateful to M. J. Oliver for collecting the X-ray data.

References

- AUTHIER-MARTIN, M. & BEAUCHAMP, A. L. (1977). Can. J. Chem. 55, 1213–1217.
- BANDY, J. A., GREEN, J. C. & KIRCHNER, O. N. (1985). Acta Cryst. C41, 1179–1181.
- BÉLANGER-GARIÉPY, F. & BEAUCHAMP, A. L. (1980). J. Am. Chem. Soc. 102, 3461-3464.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- DE CARVALHO, L. C. A., DARTIGUENAVE, M., DARTIGUENAVE, Y. & BEAUCHAMP, A. L. (1984). J. Am. Chem. Soc. 106, 6848-6849.
- GLEIZES, A., DARTIGUENAVE, M., DARTIGUENAVE, Y., GALY, J. & KLEIN, H. F. (1977). J. Am. Chem. Soc. 99, 5187-5189.
- JONES, R. A., STUART, A. L., ATWOOD, A. L. & HUNTER, W. E. (1983). J. Cryst. Spectrosc. Res. 13, 273–278.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

Acta Cryst. (1989). C45, 161-163

Structure of a Nickel(II) Complex of 18-Crown-6 at 163 K

By S. B. Larson,* S. H. Simonsen, J. N. Ramsden[†] and J. J. Lagowski

Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA

(Received 15 June 1988; accepted 18 August 1988)

Abstract. Tris(ethanol)(1,4,7,10,13,16-hexaoxacyclooctadecane)nickel(II) bis(hexafluorophosphate), $[Ni(C_2H_6O)_3(C_{12}H_{24}O_6)](PF_6)_2, M_r = 751.16, mono$ clinic, $P2_1/c$, a = 8.976 (2), b = 16.533 (4), c =22.230 (6) Å, $\beta = 109.37$ (3)°, V = 3112.2 (14) Å³, Z = 4, $D_x = 1.603 \text{ g cm}^{-3}$, λ (Mo Ka) = 0.71069 Å, μ $= 8.483 \text{ cm}^{-1}$, F(000) = 1552, R = 0.0404 for 4161 reflections ($F \ge 6\sigma_F$). The Ni²⁺ ion is coordinated to three adjacent O atoms of the crown (O1, O4, O7) and to the O atoms of three ethanol solvate molecules, the O atoms forming a distorted octahedron. The range of Ni–O distances is 1.991(2)–2.114(3) Å. Two ethanol molecules are hydrogen bonded to crown O atoms and the third is hydrogen bonded to an F atom of one PF_{6} ion. The crown has approximate mirror symmetry. The 01-04-07 and 010-013-016 planes have a dihedral angle of $106 \cdot 2$ (2)°. The average crown C–O bond lengths are 1.448 (2) Å for Ni-bound O atoms and 1.426 (4) Å for non-Ni-bound O atoms. The average C-O bond length in the ethanol molecules is 1.448 (7) Å. All C-C bonds have lengths in the range 1.489–1.505 Å.

Experimental. The title compound was prepared by the reaction of 18-crown-6 with Ni(EtOH)₆(PF₆)₂ in ethanol and ethyl orthoformate (EOF). Ni(EtOH)₆-(PF₆)₂ was prepared by the reaction of NiCl₂.6H₂O with AgPF₆ in ethanol and EOF. A pale-green crystal was mounted in a capillary tube with grease using a Schlenk apparatus to exclude moisture. The grease prevented an accurate measurement of crystal size; the maximum dimension was 0.5 mm. A summary of data collection and structural refinement is given in Table 1.

13 atoms obtained from *MULTAN*78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978) were © 1989 International Union of Crystallography

^{*} Present address: Nucleic Acid Research Institute, 3300 Hyland Avenue, Costa Mesa, CA 92626, USA.

[†] Present address: ICI, Runcorn, Cheshire, England.